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Isentropic compressibilities of solutions kS are readily
calculated using the Newton–Laplace equation together
with measured speeds of sound and densities. The result is
an apparent molar isentropic compression for a given
solute-j, f(KSj; def) and a limiting property, f(KSj; def)H.
This review examines the definition and calculation of
f(KSj; def) and f(KSj; def)H, commenting on the related

isentropic expansions, f(ESj; def) and f(ESj; def)H. We
describe the thermodynamics which underpins the use of
isentropic properties in the study of solute–solvent and
solute–solute interactions.

1 Introduction

This review explores the definition and calculation of isentropic
compressibilities and, to a lesser extent, isentropic expansibil-
ities of solutions. We direct attention to the extensive chemical
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literature describing these properties of aqueous solutions. We
develop thermodynamic equations starting from the macro-
scopic properties of solutions; e.g. Gibbs energy, volume,
compression and expansion. These properties are linked to
partial molar properties and apparent molar properties of solutes
in solution. Isentropic compressions of solutions have an
interesting history. Recently published papers still refer to the
classic monograph written by Harned and Owen.1 We draw
particular attention to their definition of apparent molar
isentropic compressions.

2 Thermodynamic background

For a closed system containing n1 and n2 moles of chemical
substances 1 and 2 the Gibbs energy is a dependent variable; the
variables [T,p,n1,n2] are the independent variables. Temperature
T is the thermal potential. Pressure p is the mechanical variable.
The number of composition variables is established using the
Gibbs Phase Rule. For closed systems (at defined T and p) at
thermodynamic equilibrium the composition (organisation) is
represented by xeq and the affinity for spontaneous change A is
zero consistent with the Gibbs energy being a minimum; eqn.
(1).

Aeq = (∂G/∂x)eq
T,p = 0 (1)

The Gibbs energy, volume and entropy of a solution at
equilibrium are state variables. We draw a contrast with those
properties which are associated with a process (pathway). Thus
we contrast the state variable V with an unspecified compres-
sion K of a solution where we need to define the path followed
by the system when the pressure is changed. The Gibbs energy
of a system at thermodynamic equilibrium where the affinity for
spontaneous change is zero and where the molecular composi-
tion/organisation is xeq, is characterised by eqn. (2).

G = G[T,p,n1,n2,A = 0] (2)

The same state is characterised by the equilibrium volume
and equilibrium entropy by eqn. (3) and eqn. (4).

V = V[T,p,n1,n2,A = 0] (3)

S = S[T,p,n1,n2,A = 0] (4)

A common feature is the use of the two intensive variables,
temperature and pressure, in the definition of extensive
variables G, V and S. When pressure is increased by finite
increments from p to (p + Dp) the volume changes in finite
increments from V to (V + DV). For an important pathway, the
temperature is constant. However, to satisfy the condition that
the affinity for spontaneous change A is zero, the molecular
organisation/composition x changes but continues to represent
equilibrium conditions. The volume at pressure (p + Dp) is
defined using eqn. (5).

V = V[T,p + Dp,n1,n2,A = 0] (5)

In principle we plot volume as a function of pressure at
constant temperature, n1, n2 and at ‘A = 0’. The gradient of the
plot at the point defined by eqn. (3) yields the equilibrium
isothermal compression, KT (A = 0); eqn. (6).

KT(A = 0) = 2(∂V/∂p)T,A = 0 (6)

KT(A = 0) characterises the state defined by the set of variables,
[T,p,n1,n2,A = 0]; cf. eqn. (2)–(4). We turn our attention to
another property starting with the system having a volume
defined by eqn. (3). The system is perturbed by a change in
pressure from p to (p + Dp) in an equilibrium displacement.
However on this occasion we require that it is the entropy which
remains constant at the value defined by eqn. (4). In principle
we plot volume V as a function of pressure at constant n1, n2, at
‘A = 0’ and at a constant entropy equal to that defined by eqn.

(4). The gradient of the plot at the point where the volume is
defined by eqn. (3) yields the equilibrium isentropic compres-
sion, KS(A = 0); eqn. (7); isentropic = adiabatic and at
equilibrium.

KS(A = 0) = 2(∂V/∂p)S,A = 0 (7)

The equilibrium state characterised by KS(A = 0) is defined by
the variables [T,p,n1n2,A = 0]. In other words an isentropic
volumetric property describes a solution defined in part by the
intensive variables, T and p. Significantly the condition on the
partial derivative in eqn. (7) is the extensive variable, entropy.
For a stable phase, KS is positive. Both KT and KS are state
variables.

The arguments outlined above are repeated with respect to
both isobaric Ep(A = 0) and isentropic ES(A = 0) equilibrium
expansions; eqn. (8) and eqn. (9).

Ep(A = 0) = (∂V/∂T)p,A = 0 (8)

ES(A = 0) = (∂V/∂T)S,A = 0 (9)

Ep(A = 0) and ES(A = 0) characterise a solution described by
the variables [T,p,n1,n2,A = 0]. The set of independent variables
of the type [T,p,n1,n2] is called Gibbsian in recognition of the
unique contribution made by J. W. Gibbs to chemical
thermodynamics. The importance of the set of independent
variables [T,p,n1,n2] and hence of the Gibbs energy is clarified
by drawing a comparison with other thermodynamic potential
functions.2

With reference to the set of independent variables [S,V,n1,n2]
chemical equilibrium at constant S and constant V, corresponds
to a minimum in thermodynamic energy, U. With reference to
the set of independent variables [S,p,n1,n2] thermodynamic
equilibrium at constant S and p occurs at the state where the
enthalpy H is a minimum. The sets of independent variables,
[S,p,n1,n2], [S,V,n1,n2] and [T,V,n1,n2] are ‘non-Gibbsian’.

3 Volume intensive variables

The (equilibrium) volume intensive compressibilities, kT and kS

are defined† by eqn. (10) and eqn. (11).

kT = 2(∂V/∂p)T/V = KT·V21 (10)

kS = 2(∂V/∂p)S/V = KS·V21 (11)

Eqn. (8) and eqn. (9) define two (equilibrium) expansions
leading to the volume intensive properties, aS and ap; eqn. (12)
and eqn. (13).

aS = (∂V/∂T)S/V = ES·V21 (12)

ap = (∂V/∂T)p/V = Ep·V21 (13)

Rowlinson and Swinton have stated that the latter property aS

is ‘of little importance’.3 The isobaric heat capacity per unit
volume s is the ratio, CP/V. A quantity that is important is the
difference d between compressibilities; eqn. (14).

d = kT 2 kS = T·[ap]2·V/Cp = T·[ap]2/s (14)

In the chemical literature the property s is given different
symbols and names; e.g. volumetric specific heat.4 We identify
s as the thermal (or, heat) capacitance. The symbol e is the
difference between isobaric and isentropic expansibilities; eqn.
(15).

e = ap 2 aS = kT·s/T·ap (15)

The Newton–Laplace equation5 is the starting point for the
determination of isentropic compressibilities [cf. eqn. (11)] of
solutions using speed of sound u and density r; eqn. (16).

u2 = (kS·r)21 (16)

In fact the speed of sound at zero frequency is a thermody-
namically defined quantity.3,5 Densities and speed of sound6 u
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(at low frequency, e.g. 1 MHz) can be precisely measured. The
isentropic condition on kS means that as a sound wave passes
through a liquid the pressure and temperature fluctuate within
each microscopic volume but the entropy remains constant. The
isentropic compressibility of water (l) at ambient T and p can be
calculated using either the speed of sound k*

S(l;acoustic) or
using k*

T(l), a*
p(l) and s*(l) to yield [see eqn. (14)] k*

S(l;thermo-
dyn). The two estimates agree lending support to the practice of
calculating isentropic compressibilities of solutions using the
Newton–Laplace equation. We can equate the isentropic
condition with adiabatic, provided that the compression and
relaxation process is microscopically reversible.

4 Solutions; partial molar properties

For a solution prepared using n1 moles of solvent-1 and nj moles
of solute-j, at defined T and p the extensive thermodynamic
property Q [ = G, H, S, V…] is related to the partial molar
properties Q1 [ = (∂Q/∂n1)T,p,n(j)] and Qj [ = (∂Q/∂nj)T,p,n(l)];
eqn. (17).

Q = n1·Q1 + nj·Qj (17)

Equations relating partial properties with the internal energy
U, its natural variables S and V, and its Legendre transforms
(e.g. Helmholtz energy, enthalpy and Gibbs energy) together
with T and p must have the same structure as in the general
thermodynamic description of a phase. Such partial molar
properties are called Lewisian.7 Lewis sought properties which
play a role thermodynamically identical to molar properties
such as molar volumes and molar isobaric heat capacities of
pure substances and which are used in equations identical in
form with those used for pure substances. Nevertheless the
formalism involving partial molar properties, Qj(T,p) in general
must be established in each case. Partial molar expansions
Epj(T,p) and compressions KTj (T,p) are Lewisian, but partial
molar isentropic compressions KSj(T,p) are not; see Section 9.

For real aqueous solutions, both V1(aq) and Vj(aq) depend on
the composition of a solution. However, V1(aq) and Vj(aq) do
not change independently, as the composition of the solution is
changed. The Gibbs–Duhem equation leads, for systems at
constant temperature and pressure, to the following condition.

n1·dVl + nj·dVj = 0 (18)

A further important set of variables is called ‘apparent
molar’. For a given aqueous solution, the thermodynamic
property Q(aq) is related to the molar property of the solvent,
water Q1

*(l) and the apparent molar property of the solute f(Qj);
eqn. (19).

Q(aq) = n1·Q*
1 + nj·f(Qj) (19)

Apparent f(Qj) and partial molar Qj(aq) thermodynamic
properties are similar and become identical in the limit of
infinite dilution. In an ideal solution, each solute molecule
exerts an influence on the properties of the solution independent
of all other solute molecules in the solution. The solute
molecules are effectively an infinite distance apart leading to the
useful concept of the infinitely dilute solution.

In even a cursory investigation of the properties of solutions,
a key consideration is the distance between solute molecules.
For a simple solute (e.g. urea) in aqueous solutions at
concentration cj the average distance apart, d, is given by
(NA·cj)21/3 where NA is the Avogadro constant. Then, if cj =
1022 mol dm23, d equals 5.5 nm.

Links between the macroscopic properties of a closed multi-
component system, and the variables that describe properties
attributed to the individual chemical components, are created
through chemical potentials.8 For a system at equilibrium,
chemical potentials have all the characteristics of state varia-

bles. Chemical potentials are similar in this respect to volume V,
entropy S and enthalpy H; all are first derivatives of the Gibbs
energy.

For a neutral solute-j in aqueous solution at fixed T and p the
chemical potential, mj(aq) is related to the molality mj using eqn.
(20) where gj is the activity coefficient of solute-j; m0 = 1
mol kg21.

mj(aq) = m0
j (aq) + R·T·ln(mj·gj/m0) (20)

By definition, at all T and p, limit(mj? 0)gj = 1; m0
j (aq) is the

chemical potential of solute-j in an ideal solution where mj = m0

= 1 mol kg21. For an ideal solution, gj is unity at all molalities.
A key consideration in formulating equations for the depend-
ence of partial molar properties on composition is the limit that
molality mj tends to zero; e.g. with reference to eqn. (20),
limit(mj ? 0)mj(aq;id) = 2H. In other words, the solute is
increasingly stabilised as the solution is diluted (at fixed T and
p). The Gurney model for solutions identifies cospheres of
solvent around each solute molecule. Hence solute–solute
interactions as described by activity coefficient gj can be
understood in part in terms of cosphere–cosphere interactions.
The extent to which the properties of a given neutral solute-j
deviate from the state defined as thermodynamically ideal
reflects to a large part the hydrophobic–hydrophilic character of
solute molecules.

For an aqueous salt solution9 containing a 1+1 salt (e.g.
NaCl), the analogue of eqn. (20) takes the following form where
mj(aq) is the chemical potential of salt-j in aqueous solution.

mj(aq) = m0
j (aq) + 2·R·T·ln(mj·g±/m0) (21)

In eqn. (21) g± is the mean ionic activity coefficient of salt-j
in solution. At all T and p, limit(mj ? 0)g± = 1; m0

j (aq) is the
chemical potential of salt-j in an ideal aqueous solution having
unit molality. As for simple solutes, in the limit of infinite
dilution the chemical potential of a salt in solution is minus
infinity. We anticipate that m0

j (aq) is given by the sum of ionic
properties m0

+(aq) and m0
2(aq) which are determined in part by

cation–water and anion–water interactions respectively, i.e.
ionic hydration.

The mean activity coefficient g± describes ion–ion inter-
actions in solution. The classic analysis in this context was
given by Debye and Hückel; see, for example, reference 10. For
very dilute solutions, the result is the famous Debye–Hückel
Limiting Law, often simply expressed as DHLL. The algebra is
simplified by defining a quantity Sg which is characteristic of
the solvent, temperature and pressure through the corresponding
dependences of solvent density r*

1(l) and relative permittivity,
er.

Hence ln(g± = 2|z+·z2|·Sg·[mj/m0]1/2 (22)

Therefore, limit(mj ? zero)ln(g±) = 0; g± = 1. In other
words, for very dilute solutions ln(g±) is a linear function of (mj/
m0)1/2 the gradient being defined by eqn. (22). According to the
DHLL, the chemical potential of salt-j in a real solution is lower
than in the corresponding ideal solution.

5 Volumes of solutions: partial and apparent
molar volumes

The isothermal differential dependence of the chemical poten-
tial mj (aq) on pressure leads to the partial molar volume for
solute-j, Vj(aq). From eqn. (20), for a neutral solute

Vj(aq) = V0
j (aq) + R·T·[∂ln(gj)/∂p]T (23)

Accordingly limit(mj? 0)Vj(aq) = V0
j (aq) = VHj (aq). Here

VHj (aq) is the limiting (infinite dilution) partial molar volume of
solute-j in aqueous solution. The limiting partial molar volume
of a solute in a given solution (at defined T and p) is
characteristic in part of solute–solvent interactions.

10 Chem. Soc. Rev., 2001, 30, 8–15



The volume of an aqueous solution prepared using mj moles
of solute-j and 1 kg of water is given by eqn. (24), where M1 is
the molar mass of the solvent.

V(aq; w1/kg = 1) = M1
21·V1(aq) + mj·Vj(aq) (24)

For real solutions, V1(aq) and Vj(aq) cannot be immediately
calculated from the measured density, r(aq) of an aqueous
solution because both V1(aq) and Vj(aq) depend on molality mj.
An apparent molar volume of solute-j, f(Vj), is defined; eqn.
(25).

V(aq;w1/kg = 1) = M21·V*
1(l) + mj·f(Vj) (25)

Lewis and Randall commented9 that ‘apparent molal quan-
tities have little thermodynamic utility’, a statement repeated in
the second8 but not the third10 edition of this classic monograph.
A further comment concerns two plots;11 (i) V(aq; w1 = 1 kg)
against mj, and (ii) [V(aq;w1 = 1 kg) 2 (1/M1)·V*

1(l)] against mj.
Then Vj(aq) is the gradient of the tangent to the curve in plot
type (i) at the specified molality mj; f(Vj) is the gradient of the
line in plot type (ii) joining the origin and [V(aq;w1 = 1 kg) 2
(1/M1)·V*

1(1)] at molality mj.
By definition, limit(mj ? 0)f(Vj) = f(Vj)H = VHj (aq); the

limit of f(Vj) at infinite dilution equals the limiting partial molar
volume of the solute VHj (aq). Partial and apparent molar
volumes are related by eqn. (26).

Vj(aq) = f(Vj) + mj·[∂f(Vj)/∂mj]T,p (26)

f(Vj) is usually calculated using the densities of solvent r*
j (1)

and solution r(aq) at the same T and p together with the
composition of the solution; e.g. eqn. (27) where cj is the
concentration of solute-j.

f(Vj) = {[r*
1(1) 2 r(aq)]/cj·r*

1(1)} + [Mj/r*
1(1)] (27)

For dilute solutions containing simple neutral solutes, f(Vj) is
usually adequately described by a linear function of mj such that
f(Vj)H and VHj are readily obtained; eqn. (28).

f(Vj) = f(Vj)H + bv·(mj/m0) (28)

The partial molar volume for a given 1+1 salt Vj(aq) is related
to the differential dependence of ln(g±) on pressure at fixed T
and molality mj; cf. eqn. (21).

Vj(aq) = VHj (aq) + 2·R·T·[∂ln(g±)/∂p]T (29)

From the definition of g± limit(mj? 0)Vj(aq) = VHj(aq). Hence
in the limit of infinite dilution the partial molar volume is a real
quantity.

According to the DHLL for a 1+1 salt,

Vj(aq) = VHj (aq) 2 2·R·T·SV·(mj/m0)1/2 (30)

By definition, SV = (∂S g /∂p)T; SV is negative. According
therefore to the DHLL, Vj(aq) is a linear function of (mj/m0)1/2

(at fixed T and p). According to the DHLL the dependence of
apparent molar volume f(Vj) on molality mj is given by eqn.
(31) where VHj equals f(Vj)H.

f(Vj) = f(Vj)H 2 (4/3)·R·T·SV·(mj/m0)1/2 (31)

For 1+1 salts in aqueous solutions having molality 0.05
mol kg21 at 298 K the difference f(Vj) 2 f(Vj)H does not follow
the pattern required by the DHLL. Rather the deviations can be
understood in terms of charge–charge interactions as described
by the DHLL together with cosphere–cosphere interactions
between hydration cospheres described by an additional term
linear in salt concentration.12

At this point we highlight the theme being developed in this
review. For a given aqueous solution at defined T and p and at
equilibrium containing a single solute-j; (e.g. urea) the Gibbs
energy G is a state variable; cf. eqn. (1). The solute-j in this
solution can be characterised by its chemical potential, mj(aq);
eqn. (20) and eqn. (21). Then mj (aq) is related to the molality mj

using eqn. (20) in which m0
j (aq) is in part determined by solute–

solvent interactions and gj characterises solute–solute inter-

actions in a real solution. In the next stage the isothermal
dependence of mj(aq) on pressure leads to the partial molar
volume Vj(aq). Densities of solutions are used to estimate the
apparent molar volume f(Vj) using eqn. (27). In turn the limiting
(infinite dilution) volumetric property is obtained. The next task
involves identifying those properties of solute and solvent
which determine VHj (aq). One approach assumes that VHj (aq) is
given by the sum of two contributions, Vj(intrinsic) and
Vj(cosphere); cf. reference 12. Thus Vj(intrinsic) reflects the
‘size’ of the solute molecule-j whereas Vj(cosphere) represents
the impact of solute–solvent interactions; i.e. the hydration of
solute-j in aqueous solution.

Hence VHj (aq) = Vj(intrinsic) + Vj(cosphere) (32)

Unfortunately there is no unambiguous method which allows
us to calculate the two component volumes identified in eqn.
(32). Nevertheless we speculate that Vj(intrinsic) is independent
of temperature and pressure such that the temperature and
pressure derivatives of VHj (aq) offer a method for probing the
hydration of solutes in aqueous solution via Vj(cosphere). We
stress the word ‘speculate’ in this context. Therefore the
isothermal compressibility kT describing the (equilibrium)
dependence of volume on pressure at constant temperature
might seem the property which should command most of our
attention. Unfortunately isothermal compressions of solutions
are not readily measured. Similarly, determination of partial
molar expansions of a solute-j requires careful determination of
densities of solutions as a function of both temperature and
composition. Hence the amount of published information is not
extensive. At first sight it is surprising that the most extensively
measured property of solutions in this context is the isentropic
compressibility, kS. A less commonly quoted volumetric
property of aqueous solutions is the isentropic expansion,
ES(aq). There is an interesting link between the isentropic
compressions and expansions; section 10.

6 Thermal expansions of solutions: isobaric
properties

The isobaric differential dependence of the volume, V, on
temperature (at equilibrium where A = 0) is given by eqn. (8).
The isobaric expansion Ep(aq) for an aqueous solution contain-
ing solute-j is related to the partial molar expansions of solute
and solvent; cf. eqn. (17).

Ep(aq) = n1·Ep1(aq) + nj·Epj(aq) (33)

Similarly from eqn. (19) for Q · V,

[∂V(aq)/∂T]p = n1·[∂V*
1(l)/∂T]p + nj·[∂f(Vj)/∂T]p (34)

Thus, Ep(aq) = n1·E*
p1(l) + nj·f(Epj) (35)

Here f(Epj) = [∂f(Vj)/∂T]p, the (equilibrium) apparent molar
isobaric expansion for solute-j. Further, f(Epj) is related to
ap(aq) and a*

p1(l) using eqn. (36); cf. eqn. (27).

f(Epj) = [ap(aq)2 a*
p1(l)]·(cj)21 + a*

p1(l)·f(Vj) (36)

Thus f(Epj) is obtained for a solution having concentration
cj.

7 Isentropic expansions of solutions

Generally little interest has been shown in either partial or
apparent molar isentropic expansions of solutes. Complications
are encountered in understanding isentropic expansions without
the redeeming feature of practical accessibility via an analogue
of the Newton–Laplace equation (Section 3). The isentropic
expansion ES(aq) is defined by eqn. (9). The constraint on this
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partial differential refers to the entropy of the solution. The
straightforward schemes described in eqn. (34)-(36) cannot be
carried over to a consideration of ES(aq) because as we change
the amount of solute nj for a fixed temperature, pressure and
amount of solvent n1, so both V(aq) and S(aq) change yielding
a new isentropic thermal expansion ES(aq) at a new entropy
S(aq). Then for a series of solutions having different molalities,
comparison of ES(aq) is not straightforward because entropy
S(aq) is itself a function of solution composition. Further
comparison cannot be readily drawn with the isentropic thermal
expansion of the pure solvent E*

Sl(l); eqn. (37).

E*
Sl(1) = [∂V*

1(1)/∂T] at constant S*
1(1) (37)

Thus ES(aq) is a non-Gibbsian property. Consequently,
familiar thermodynamic relationships involving partial molar
properties are not valid in the case of partial molar isentropic
(thermal) expansions which are non-Lewisian properties. We
describe [∂Vj(aq)/∂T] for solute-j in aqueous solution at constant
S(aq) as a semi-partial molar property.

Then for a solution having entropy S(aq), two partial molar
isentropic thermal expansions are defined for the solvent and
solute. Thus at S(aq) characterised by T, p, n1 and nj,

ESl(aq;def) = [∂ES(aq)/∂n1] at fixed T, p and n1 (38)

ESj(aq;def) = [∂ES(aq)/∂nj] at fixed T, p and n1 (39)

So that, ES(aq) = n1·ES1(aq;def) + nj·ESj(aq;def) (40)

Eqn. (40) relates ES(aq) to the partial molar intensive
isentropic properties of both solvent and solute.

We find a similar dichotomy in defining an apparent molar
isentropic expansion for solute-j, f(ESj). We might assert that
f(ESj) is defined by the isentropic differential dependence f(Vj)
on temperature. Alternatively, we use an equation by analogy to
those used to relate, for example, V(aq) to V*

1 and f(Vj).
Differentiation of eqn. (19) with V · Q at constant entropy

again raises the problem that the molar entropy S(aq) does not
equal the molar entropy of the pure solvent, S*

1(l) However, by
analogy with the definition of f(Epj) we define a quantity f(ESj;
def) using eqn. (41); cf. eqn. (35).

ES(aq) = n1·E*
Sl(l) + nj·f(ESj;def) (41)

In eqn. (41) E*
Sl(l) is the molar intensive property of the

solvent. Thus, the isentropic expansion of the solution at
entropy S(aq) is linked with that of the pure solvent at entropy
S*

1(l). Further

f(ESj;def) = [aS(aq) 2 a*
Sl(l)]·(cj)21 + a*

Sl(l)·f(Vj) (42)

Interesting equations link isobaric and isentropic expansions;
Section 10.

8 Isothermal compressions and compressibilities
of solutions

The differential dependence of V(aq) on pressure (at constant
temperature) yields an equation for the isothermal (equilibrium)
compression of a solution; cf. eqn. (24),

KT(aq) = n1·KTl(aq) + nj·KTj(aq) (43)

Partial molar compressions KTl(aq) and KTj(aq) are Lewisian
properties of solute and solvent respectively. The analogue of
eqn. (41) has the following form where f(KTj) is the apparent
molar (isothermal) compression of solute-j.

KT(aq) = n1·K*
T1(l) + nj·f(KTj) (44)

where f(KTj) = 2[∂f(Vj)/∂p]T (45)

f(KTj) is related to the concentration of solute cj and the
apparent molar volume, f(Vj).

f(KTj) = [kT(aq) 2 k*
Tl(l)]·(cj)21 + k*

Tl(l)·f(Vj) (46)

The latter equation resembles the equations for f(Epj) and
f(ESj;def) as a function of the concentration of solute cj and
f(Vj). Both f(KTj) and KTj(aq) depend on the molality of the
solute. KTj(aq) is related to the second differential of the solute
activity coefficient with respect to pressure; cf. eqn. (23).

KTj(aq) = KHTj(aq) 2 R·T·[∂2ln(gj)/∂p2]T (47)

One might have anticipated an extensive scientific literature
reporting KHTj(aq) for a wide range of solutes. Unfortunately,
direct measurement of isothermal compressibilities is difficult;
at least to the precision required for determining KHTj(aq). Under
these circumstances two procedures have been adopted, one
commendable and the other perhaps less so. In both cases, the
chosen route uses the isentropic compressibilities of solutions
calculated from densities and speed of sound (Section 3).

The commendable route combines the measured isentropic
compressibilities, densities and isobaric heat capacities Cp(aq)
in order to calculate isothermal compressibilities; cf. eqn. (14)
for a given solution having molality mj. An excellent example of
this approach is described by Bernal and Van Hook13 who used
the Desnoyers–Philip equation (see Section 10) to calculate
f(KTj)H for glucose, sucrose and fructose in aqueous solutions
at 348 K. In a similar manner, Hedwig et al. used the
Desnoyers–Philip equation (Section 10) to obtain estimates of
limiting apparent molar isothermal compressions of glycyl
dipeptides in aqueous solutions at 298 K.14

The less commendable but, under the circumstances, under-
standable route uses a measured kS as being effectively the same
as kT. Hence f(KSj;def) is often taken as a satisfactory estimate
of f(KTj). We return to this point in Section 9 because there are
further problems which we need to address.

For neutral solutes f(KTj) is satisfactorily expressed as a
linear function of the concentration cj.

Thus f(KTj) = f(KTj)H + aK·cj (48)

For aqueous salt solutions the apparent molar compression,
f(KTj) is often a linear function of the square root of the salt
concentration.15

Thus f(KTj) = f(KTj)H + SK·c
1
2

j (49)

9 Isentropic compressions and compressibilities of
solutions

We turn to the definition of a property that, by analogy to f(KTj),
is the apparent molar isentropic compression of the solute f(KSj)
which, again by analogy, is related to a partial molar isentropic
compression KSj of solute-j. For reasons given below, we write
the apparent property f(KSj;def).

These isentropic properties emerge from consideration of
eqn. (3) and eqn. (4). The assertion is made that an aqueous
solution can be perturbed, by a small change in pressure dp, to
a neighbouring state having the same entropy; cf. eqn. (4). Then
the equilibrium isentropic compression is defined by eqn.
(50).

KS(aq) = 2[∂V(aq)/∂p]S(aq (50)

The constraint on this partial differential refers to ‘at constant
S(aq)’. Thus the definition of KS(aq) uses non-Gibbsian
independent variables. Isentropic parameters do not arise
naturally from the formalism which expresses the Gibbs energy
in terms of independent variables in the case of, for example, a
simple solution, [T,p,n1,nj].

The isothermal compression of a solution KT(aq) and partial
molar isothermal compressions of both solvent KTl(aq) and
solute KTj(aq) are defined using Gibbsian independent varia-
bles; e.g. eqn. (43)-(45). Unfortunately these equations cannot
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be simply carried over to the isentropic property KS(aq). Indeed
the isentropic pressure dependence of the volume may be
expressed as in eqn. (51). The equation emphasises that the
entropy which remains constant is that of the solution.

KS(aq) = 2n1·[∂Vl(aq)/∂p]S(aq);A = 0 2 nj·[∂Vj(aq)/∂p]S(aq);A = 0

(51)

On the other hand, KS (aq) may also be re-expressed using
Euler’s theorem.

Then, KS(aq) = n1·[∂KS(aq)/∂n1]T,p,n(j)

+ nj·[∂KS(aq)/∂nj]T,p,n(1) (52)

But KS(aq) is defined using non-Gibbsian independent
variables. As a consequence two inequalities follow.

2[∂V1(aq)/∂p]S(aq) ≠ [∂KS(aq)/∂n1]T,p,n(j) (53)

2[∂V1(aq)/∂p]S(aq) ≠ [∂KS(aq)/∂nj]T,p,n(1) (54)

[∂KS(aq)/∂n1]T,p,n(j) and [∂KS(aq)/∂n1]T,p,n(1) are respectively
the partial molar properties of the solvent and solute. Because
partial molar properties should describe the effects of a change
in composition on the properties of a solution, we write eqn.
(52) for an aqueous solution7 in the following form.

KS(aq) = n1·KS1(aq;def) + nj·KSj(aq;def) (55)

Hence, KSj(aq;def) ≠ 2[∂Vj(aq)/∂p]S(aq) (56)

Therefore KSj(aq;def) is a non-Lewisian partial molar
property. We might define a molar isentropic compression of
solute j as (minus) the isentropic differential dependence of
partial molar volume on pressure. This alternative definition is
consistent with eqn. (51) expressing a summation rule analo-
gous to that used for partial molar properties. However some
other thermodynamic relationships involving partial molar
properties would not be valid in this case. Therefore, 2[∂Vj(aq)/
∂p]S(aq) is a semi-partial property. A similar problem is
encountered in defining an apparent molar compression for
solute-j, f(KSj) in a solution having volume V(aq); cf. eqn. (56).
We might assert that f(KSj) is related to the isentropic
differential dependence of f(Vj) on pressure, 2[f(Vj)/∂p]S(aq).
Alternatively, using as a guide the apparent molar properties
f(Epj) and f(KTj), we could define ø(KSj;def) using eqn. (57).

KS(aq) = n1·K*
S1(l) + nj·f(KSj;def) (57)

KSj(aq;def) as given by eqn. (52) and f(KSj;def) are linked;
eqn. (58).

KSj(aq;def) = f(KSj;def) + nj·[∂f(KSj;def)/∂nj]T,p,n(1) (58)

This equation is of the general form encountered for other
apparent and partial molar properties; cf. eqn. (26). This form is
also valid in the case of partial and apparent molar isobaric
expansions, isothermal compressions and isobaric heat capaci-
ties. On the other hand, the semi-partial isentropic compression
defined by 2[∂Vj(aq)/∂p]S(aq) and the semi-apparent isentropic
compression defined by 2[∂f(Vj)/∂p]S(aq) are related. Thus the
isentropic pressure dependence of Vj(aq) is given by eqn.
(59).

2[∂Vj(aq)/∂p]S(aq) = 2[∂f(Vj)/∂p]S(aq) 2

nj·{∂[∂f(Vj)/∂nj]T,p,n(1)/∂p}S(aq) (59)

Hence, {∂[∂f(Vj)/∂nj]T,p,n(1)/∂p}S(aq) ≠
{∂[∂f(Vj}/∂p]S(aq)/∂nj}T,p,n(1) (60)

Hence, the analogue of eqn. (58) does not hold for these
‘semi’ properties. The inequalities (53) and (54) highlight the
essence of non-Lewisian properties. Their origin is a combina-
tion of properties defined in terms of Gibbsian and non-
Gibbsian independent variables as in eqn. (51) and eqn. (52).
This combination is also the reason for the inequality (60). We
stress that the isentropic condition in eqn. (51) and eqn. (52)
refers to the entropy S(aq) of the solution defined as is the
volume V(aq) by the Gibbsian independent variables [T,p,n1nj].

But this is not the entropy S*
1(l) of the pure solvent having

volume V*
1(l). S(aq) at fixed composition is not simply related to

S*
1(l) as, for example, linear functions of temperature and

pressure.
The isentropic condition is involved in the definitions of

isentropic compression, K*
S1(l) and isentropic compressibility

k*
S1(l) of the solvent.

K*
S1 (l) = 2[∂V*

1(l)/∂p] at constant S*
1(l) (61)

k*
S1(l) = K*

S1(l)/V*
1(l) = 2[∂V*

1(l)/∂p]/V*
1(l) at constant S*

1(l)
(62)

The different isentropic conditions in eqn. (50) and in eqn.
(61) and eqn. (62) signal a complexity in the isentropic
differentiation of eqn. (25) with respect to pressure.

Interest in the isentropic compresssibilities of solutions was
stimulated by Gucker15 and, in particular, by Harned and
Owen.1 The latter authors defined a (practical) property of the
solute, here called f(KSj;def) using eqn. (63) where the
composition of a given aqueous solution is expressed using
concentration cj.

f(KSj;def) · [kS(aq) 2 k*
S1(l)]·[cj]21 + k*

S1(l)·f(Vj) (63)

Also

f(KSj;def) · [kS(aq)·r*
1(l) 2 k*

S1(l)·r(aq)]·[cj·r*
1(l)]21 +

k*
S1(l)·Mj·[r*

1(l)]21 (64)

Similar equations relate f(KS;def) to the molality of the
solute, mj.

f(KSj;def) · [kS(aq) 2 k*
S1(l)]·[mj·r*

1(l)]21 + kS(aq)·f(Vj)
(65)

f(KSj;def) · [kS(aq)·r*
1(l) 2 k*

S1(l)·r(aq)]·[mj·r(aq)·r*
1(l)]21 +

kS(aq)·Mj·[r(aq)]21 (66)

These last four defining equations are rigorously equivalent.
A crucial feature of eqn. (63)–(66) is the equivalence symbol
(i.e. ·). In this sense Harned and Owen1 defined an apparent
isentropic compression of solute-j in terms of the quantities on
the rhs of eqn. (63). They recognised that f(KSj;def) does not
have thermodynamic basis. Unfortunately many authors refer to
the proposals by Harned and Owen1 without noting the
significance of the symbol, ·. The target quantity is the apparent
molar isentropic compression defined by eqn. (57) which,
however, is not a description of an isentropic process as its name
might suggest. In fact f(KSj;def) is a measure of the change in
the isentropic compression of a solution when solute-j is added
under isothermal-isobaric conditions. The equivalence symbol
in eqn. (63)–(66) is important.16

The impression is often given that eqn. (63)–(66) are
thermodynamic. Some authors do, however, indicate reserva-
tions especially when the estimates of f(KSj;def) are discussed,
particularly the dependence of f(KSj;def) on solution composi-
tion. Franks and co-workers17 recognised the lack of isobaric
heat capacity data which forces the adoption of the approach in
which f(KSj;def) is effectively assumed equal to f(KTj). Owen
and Simons18 estimate that overlooking the difference between
kS(aq) and kT(aq) causes errors of approximately 7.5% in
estimates of f(KTj)H for NaCl(aq) and KCl(aq) at 298 K.

Interesting patterns emerge for the dependences of f(KSj;def)
on molality mj and on solute-j. Further, these dependences are
readily extrapolated (geometrically) to infinite dilution to yield
estimates of f(KSj;def)H. These comments apply to solutions of
neutral solutes in both aqueous and non-aqueous solutions; e.g.
solutions in propylene carbonate.19

For dilute solutions of neutral solutes f(KSj;def) is often a
linear function of the molality mj.

Thus f(KSj;def) = f(KSj;def)H + bKS·(mj/m0) (67)

For aqueous solutions containing ureas, acetamides and a,w-
alkanediols, the slope bKS is positive and characteristic of the
solute.20 Sakurai et al.21 report the results of a detailed
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investigation into the isentropic compression of alcohols in
dilute solutions over the range from 5 to 45 Celsius. Inter-
estingly f(KSj;def)H is generally smaller than the molar property
of the pure liquid-j. Galema and Høiland22 use eqn. (65) to
analyse speed of sound data for several carbohydrates in
aqueous solutions at 298 K. They comment on the calculation of
KSj(aq;def) for solute-j using eqn. (68).

KSj(aq;def) = f(KSj;def) + mj·[∂f(KSj;def)/∂mj]T,p (68)

This study confirmed the importance of the stereochemistry
of carbohydrates on their hydration. A clear contrast is drawn
between those solutes where the hydrophilic groups match and
mismatch23 into the three dimensionally hydrogen-bonded
structure of liquid water.

Desnoyers et al.24 used eqn. (65) to probe micelle formation
by alkyldimethylamine oxides. Eqn. (65) was used to analyse
the isentropic compressibilities of micellar aqueous solutions
containing sodium octanoate and ethoxylated alcohols.25 Iqbal
and Verrall26 use eqn. (66) in an examination of the compressi-
bilities of glycyl peptides in aqueous solutions at 298 K. The
dependence of f(KSj;def) on molality mj is linear leading to
estimates f(KSj;def)H. For amino acids in aqueous solution at
298 K, the calculated f(KSj;def) is a linear function27 of the
molality of the neutral amino acid yielding estimates of
f(KSj;def)H.

For salt solutions, the dependence of f(KSj;def) on the
molality of the salt is generally examined in the light of
equations describing the role of ion–ion interactions (see
Section 4). For dilute solutions eqn. (69) forms the basis for
examining the dependence of f(KSj;def) on (mj)1/2 where mj is
the molality of the salt-j.

Then, f(KSj;def) = f(KSj;def)H + SKS·(mj/m0)1/2 (69)

For a large range of 1+1 salts, that f(KSj;def)H is negative is
attributed to electrostriction by the ionic charges. f(KSj;def)H is
more negative for solutions in D2O, than in H2O, as a
consequence of more intense electrostriction in D2O.28 Further,
on the basis of the Desnoyers–Philip equation (see Section 10),
the difference f(KSj;def) 2 f(KTj)H is small but not negligible,
amounting to approximately 10%. For alkylammonium ions in
aqueous solutions f(KSj;def)H decreases with increase in the
hydrophobic power, matching a general increase in f(Vj)H.29

Generally the property SKS cannot be evaluated because the
isentropic dependence of the relative permittivity of the solvent
is required.28 Further, the DHLL for f(KSj;def) is itself a
complicated function of salt molality.30 However for many
dilute salt solutions f(KSj;def) is approximately a linear function
of (mj/m0)1/2; cf. eqn. (69). Indeed f(KSj;def) is approximately a
linear function of (mj/m0)1/2 for a wide range of aqueous and
non-aqueous salt solutions; e.g. tetraalkylammonium salts in
cyanomethane and benzonitrile.31 f(KSj;def) for copper(I) and
sodium perchlorates in cyanobenzene, pyridine and cyano-
methane show almost no dependence on salt molality.31

Determination of f(KSj;def) for amino acids,32,33 proteins,
nucleic acids and nucleotides34 has attracted enormous interest.
Interesting patterns emerge pointing to the complexity of both
solute–water and solute–solute interactions in these systems.

In terms of the development of the theory, the problem is
concerned with the differential dependence of V*

1(l) on pressure
at constant S(aq) describing how the volume of the solvent
would depend on pressure if it were held at the same entropy as
the solution.16

Thus

2[(∂f(Vj)/∂p]S(aq) = [kS(aq) 2 k*
S1(l)]·[mj·r*

1(l)]21 +
kS(aq)·f(Vj) + [mj·r*

1(l)]21·T·a1(l)·{[ap/s(aq)] 2
[a*

p1(l)/s*
1(l)]} (70)

The latter equation is thermodynamically correct. No as-
sumptions have been made in its derivation. We adopt the
procedure used by Harned and Owen.1

2[(∂f(Vj)/∂p]S(aq) = f(KSj;def) + 
[mj·r*

1(l)]21·T·a*
p1(l)·{[ap(aq)/s(aq)] 2 [a*

p1(l)/s*
1(l)]} (71)

Consequently the difference between 2[∂f(Vj)/∂p]S(aq) and
f(KSj;def) is determined by the difference Df; eqn. (72).

Df = {[ap(aq)/s(aq)] 2 [a*
p1(l)/s*

1(l)]} (72)

However, Df/mj is indeterminate at infinite dilution. But
using L’Hospital’s rule,

limit (mj? 0)Df/mj =
[r*

1(l)·a*
p1(l)/s1(l)]{[f(Epj)H/a*

p1(l)] 2 [f(Cpj)H/s*
1(l)]} (73)

Nevertheless, despite the thermodynamic polish given to the
analysis of isentropic compressions of solutions, there is an
underlying problem. The latter again emerges in eqn. (70)
which needs to refer to compressions at constant entropies for
solutions and the pure solvent. In fact rarely is this feature
acknowledged. Indeed one purpose of this review is to point out
this feature.

10 Apparent molar isothermal and isentropic
compressions and expansions: infinite dilution

Expansions and compressions of solutions under a combination
of isothermal, isobaric and isentropic constraints are intimately
linked.35 The most frequently quoted relationship is the
Desnoyers–Philip equation4 linking f(KTj) and f(KSj;def). We
noted that the extrapolated limiting value f(KTj)H offers
information about the hydration of a solute. Nevertheless in the
face of experimental problems the favoured approach examines
isentropic compressibilities. The apparent molar isothermal
compression for solute-j f(KTj) is related to the solute
concentration cj using eqn. (46). The corresponding apparent
molar isentropic compression of solute-j f(KSj;def) is related to
the concentration using eqn. (63). Hence f(KTj) and f(KSj;def)
are related by the following eqn. (74).

f(KTj) 2 f(KSj;def) = (cj)21·[d(aq) 2 d*
1(l)] + d*

1(l)·f(Vj)
(74)

The difference [f(KTj) 2 f(KSj;def)] depends on the concen-
tration of the solute cj. Further [d(aq) 2 d*

1(l)] is not zero. Thus
from eqn. (14),

d(aq) 2 d*
1(l) = {T·[ap(aq)]2/(aq)} 2 {T·[a*

p1(l)]2/s*
1(l)}

(75)

Using the technique of adding and subtracting the same
quantity, eqn. (75) can be re-expressed as follows.

d(aq) 2 d*
1(l) = {d(aq)/[ap(aq)]2}·[ap(aq) + a*

p1(l)]·ap(aq) 2
a*

p1(l)] 2 [d*
1(l)/s(aq)]·[s(aq) 2 s*

1(l)] (76)

The difference, [ap(aq) 2 a*
p1(l)] is related to f(Epj) using

eqn. (36). Similarly, [s(aq) 2 s*
1(l)] is related to f(Cpj) using

eqn. (77).

f(Cpj) = [s(aq) 2 s*
1(l)]·(cj)21 + s*

1(l)·f(Vj) (77)

Then using eqn. (76), we express eqn. (74) in the following
manner.

f(KTj) 2 f(KSj;def) = [d(aq)/ap(aq)]·{1 +
[a*

p1(l)ap(aq)]}·f(Epj) 2[d*
1(l)/s(aq)]·f(Cpj) + {d*

1(l) 2
[d(aq)·a*

p1(l)/ap(aq)]}·f(Vj) (78)

Eqn. (78) was obtained by Desnoyers and Philip4 although a
proof was not given. Desnoyers and Philip showed that if
f(KTj)H and f(KSj;def)H are the limiting (infinite dilution)
apparent molar properties, the difference is given by eqn.
(79).

f(KTj)H 2 f(KSj;def)H = d*
1(l)·{[2·f(Epj)H/a*

pj(l)] 2
[f(Cpj)H/s*

1(l)]} (79)
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Using eqn. (63), f(KSj;def) is plotted as a function of cj across
a set of different solutions having different entropies. Then
limit(cj ? 0)f(KSj;def) defines f(KSj;def)H. Granted two
limiting quantities, f(Epj)H and f(Cpj)H are available for the
solution at the same T and p, eqn. (79) is used to calculate
f(KTj)H using f(KSj;def)H.

An alternative form of eqn. (78 refers to a solution, molality
mj.30

Thus, f(KTj) 2 f(KSj;def) = d*
1(l)·{[2·f(Epj)/a*

p1(l)] 2
[f(Cpj)/s*

1(l)] + [r*
1(l)·mj·[f(Epj)]2/[a*

p1(l)]2]}·
{1 + [r*

1(l)·mj·f(Cpj)/s*
1(l)]}21 (80)

The apparent molar expansions, f(Epj) and f(Epj;def) are
linked by eqn. (81).
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where e*1(l) and e(aq) are defined by eqn. (15). In the limit of
infinite dilution,
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On the rhs of eqn. (82) each term is the ratio of a limiting
apparent molar property of solute-j to the corresponding volume
intensive property of the solvent. An allied set of equations
incorporate terms relating to isentropic compressions. Thus
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Then in the limit of infinite dilution,
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Finally, ‘semi’ apparent molar isentropic expansions (section
7) and compressions (Section 9) are linked; eqn. (85).

[∂f(Vj)]∂T]S(aq)/aS(aq) = 2[∂f(Vj)/∂p]S(aq)/kS(aq) (85)

Therefore in an analogous fashion to the pattern shown by
eqn. (82) and eqn. (84) an interesting pattern emerges in the
form of the terms in eqn. (85).

These fascinating equations illustrate the power of thermody-
namics in drawing together the properties of a given solution.
Indeed this has been one of the themes of this review.
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