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Isentropic compressibilities of solutions ks are readily
calculated using the Newton—Laplace equation together
with measured speeds of sound and densities. The result is
an apparent molar isentropic compression for a given
solute-j, ¢(Kg; def) and a limiting property, ¢(Kg; def)=.
This review examines the definition and calculation of
o(Kg; def) and ¢(Kg; def)=, commenting on the related

T Electronic supplementary information (ESI) is available: derivations of
several key equations cited in the review. See http://www.rsc.org/suppdata/
cs/a9/a908547¢/

isentropic expansions, ¢(Eg; def) and ¢(Eg; def)=. We
describe the thermodynamics which under pins the use of
isentropic properties in the study of solute-solvent and
solute-solute interactions.

1 Introduction

Thisreview exploresthe definition and cal culation of isentropic
compressibilities and, to a lesser extent, isentropic expansibil-
ities of solutions. We direct attention to the extensive chemical
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literature describing these properties of agueous solutions. We
develop thermodynamic equations starting from the macro-
scopic properties of solutions; e.g. Gibbs energy, volume,
compression and expansion. These properties are linked to
partial molar properties and apparent molar properties of solutes
in solution. Isentropic compressions of solutions have an
interesting history. Recently published papers still refer to the
classic monograph written by Harned and Owen.l We draw
particular attention to their definition of apparent molar
isentropic compressions.

2 Thermodynamic background

For a closed system containing n; and n, moles of chemical
substances 1 and 2 the Gibbs energy is adependent variable; the
variables[T,p,ny,n;] aretheindependent variables. Temperature
T isthethermal potential. Pressure p isthe mechanical variable.
The number of composition variables is established using the
Gibbs Phase Rule. For closed systems (at defined T and p) at
thermodynamic equilibrium the composition (organisation) is
represented by £ed and the affinity for spontaneous change A is
zero consistent with the Gibbs energy being a minimum; egn.

).
A= = (0GI0EF, = 0 )

The Gibbs energy, volume and entropy of a solution at
equilibrium are state variables. We draw a contrast with those
properties which are associated with a process (pathway). Thus
we contrast the state variable V with an unspecified compres-
sion K of a solution where we need to define the path followed
by the system when the pressure is changed. The Gibbs energy
of asystem at thermodynamic equilibrium where the affinity for
spontaneous change is zero and where the molecular composi-
tion/organisation is &e9, is characterised by egn. (2).

G = G[T,p,ny,nz,A = 0] 2

The same state is characterised by the equilibrium volume
and equilibrium entropy by egn. (3) and eqgn. (4).

V = V[T,p,ny,n2,A = 0] 3
S = gT,p,ny,nz,A = 0] 4

A common feature is the use of the two intensive variables,
temperature and pressure, in the definition of extensive
variables G, V and S When pressure is increased by finite
increments from p to (p + Ap) the volume changes in finite
increments from V to (V + AV). For an important pathway, the
temperature is constant. However, to satisfy the condition that
the affinity for spontaneous change A is zero, the molecular
organi sation/composition £ changes but continues to represent
equilibrium conditions. The volume at pressure (p + Ap) is
defined using egn. (5).

V = V[T,p+ ApnumpA = 0] ®)

In principle we plot volume as a function of pressure at
constant temperature, ny, np and at ‘A =0'. The gradient of the
plot at the point defined by eqn. (3) yields the equilibrium
isothermal compression, K+ (A = 0); egn. (6).

Kr(A = 0) = —(0VIop)ra=0 (6)

K+(A = 0) characterisesthe state defined by the set of variables,
[T.p,n1,n,A = 0]; cf. egn. (2)«4). We turn our attention to
another property starting with the system having a volume
defined by egn. (3). The system is perturbed by a change in
pressure from p to (p + Ap) in an equilibrium displacement.
However on thisoccasion werequirethat it isthe entropy which
remains constant at the value defined by egn. (4). In principle
we plot volume V as afunction of pressure at constant ny, n,, at
‘A = 0" and at aconstant entropy equal to that defined by egn.

(4). The gradient of the plot at the point where the volume is
defined by egn. (3) yields the equilibrium isentropic compres-
sion, Ks(A = 0); egn. (7); isentropic = adiabatic and at
equilibrium.

Ks(A = 0) = —(0V/I0p)sa=o (7)

The equilibrium state characterised by Ks(A = 0) is defined by
the variables [T,p,ninz,A = 0]. In other words an isentropic
volumetric property describes a solution defined in part by the
intensive variables, T and p. Significantly the condition on the
partial derivativein egn. (7) is the extensive variable, entropy.
For a stable phase, Ks is positive. Both K+ and Ks are state
variables.

The arguments outlined above are repeated with respect to
both isobaric Ey(A = 0) and isentropic EJ(A = 0) equilibrium
expansions; egn. (8) and egn. (9).

EdA = 0) = (OVIdT)pa=o ®
ESA = 0) = (0VIdT)sa=o ©

Ex(A = 0) and EJA = 0) characterise a solution described by
thevariables[T,p,ny,nz,A = 0]. The set of independent variables
of the type [T,p,ny,n;] is called Gibbsian in recognition of the
unique contribution made by J W. Gibbs to chemical
thermodynamics. The importance of the set of independent
variables [T,p,ny,nz] and hence of the Gibbs energy is clarified
by drawing a comparison with other thermodynamic potential
functions.2

With reference to the set of independent variables[SV,ny,n;]
chemical equilibrium at constant Sand constant V, corresponds
to a minimum in thermodynamic energy, U. With reference to
the set of independent variables [Sp,n;,n;] thermodynamic
equilibrium at constant S and p occurs at the state where the
enthalpy H is a minimum. The sets of independent variables,
[Sp,n1,nz], [SV,n1,no] and [T,V,n1,n,] are ‘non-Gibbsian'.

3 Volume intensive variables

The (equilibrium) volumeintensive compressibilities, xrand ks
are definedt by egn. (10) and egn. (11).
kr = —(0VIOp)H/V = Ky-V-1 (10)
Ks = —(0VIOp)dV = KgV-1 (12)
Eqgn. (8) and egn. (9) define two (equilibrium) expansions
leading to the volume intensive properties, asand o, egn. (12)
and egn. (13).
as = (0VIOT)dV = EgV-1 (12
op = (OVIOT)/V = EpV1 (13)
Rowlinson and Swinton have stated that the | atter property os
is ‘of little importance’ .3 The isobaric heat capacity per unit
volume o istheratio, Cp/V. A quantity that isimportant is the
difference 6 between compressibilities; egn. (14).
0= k1 — ks = T{og]2VIC, = T{o)%o 14
In the chemical literature the property o is given different
symbols and names; e.g. volumetric specific heat.# We identify
o as the thermal (or, heat) capacitance. The symbol ¢ is the
difference between isobaric and isentropic expansibilities; egn.
(15).
€= op— as = krolT-ap (15)
The Newton-L aplace equations is the starting point for the
determination of isentropic compressibilities [cf. egn. (11)] of
solutions using speed of sound u and density p; egn. (16).
U2 = (ksp)? (16)

In fact the speed of sound at zero frequency is a thermody-
namically defined quantity.35 Densities and speed of sound® u
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(at low frequency, e.g. 1 MHz) can be precisely measured. The
isentropic condition on ks means that as a sound wave passes
through a liquid the pressure and temperature fluctuate within
each microscopic volume but the entropy remains constant. The
isentropic compressibility of water () at ambient T and p can be
calculated using either the speed of sound «i(l;acoustic) or
using x5(1), o(l) and o” (1) to yield [see egn. (14)] x&(I;thermo-
dyn). The two estimates agree lending support to the practice of
calculating isentropic compressibilities of solutions using the
Newton—-Laplace equation. We can equate the isentropic
condition with adiabatic, provided that the compression and
relaxation process is microscopically reversible.

4 Solutions; partial molar properties

For asolution prepared using n,; moles of solvent-1 and n; moles
of solute-j, a defined T and p the extensive thermodynamic
property Q [= G, H, S V...] is related to the partial molar
properties Qq [= (0Q/0N1)1pnp] and Qj [= (0Q/OM)Tpnw];
eqgn. (17).
Q = mQy+n-Q (17)
Equations relating partial properties with the internal energy
U, its natural variables S and V, and its Legendre transforms
(e.g. Helmholtz energy, enthalpy and Gibbs energy) together
with T and p must have the same structure as in the general
thermodynamic description of a phase. Such partial molar
properties are called Lewisian.” Lewis sought properties which
play a role thermodynamically identical to molar properties
such as molar volumes and molar isobaric heat capacities of
pure substances and which are used in equations identical in
form with those used for pure substances. Nevertheless the
formalisminvolving partial molar properties, Q;(T,p) in general
must be established in each case. Partial molar expansions
Ep(T,p) and compressions K; (T,p) are Lewisian, but partial
molar isentropic compressions Kg(T,p) are not; see Section 9.
For real agueous solutions, both V(ag) and V;(aq) depend on
the composition of a solution. However, Vi(ad) and Vj(aq) do
not change independently, as the composition of the solution is
changed. The Gibbs-Duhem equation leads, for systems at
constant temperature and pressure, to the following condition.

ndv, + ndv; = 0 (18

A further important set of variables is called ‘apparent
molar’. For a given agueous solution, the thermodynamic
property Q(aq) is related to the molar property of the solvent,
water Q,"(I) and the apparent molar property of the solute ¢(Q;);

egn. (19).
Q(ag) = ni-Q1 + nj-¢(Q) (19)

Apparent ¢(Q;) and partial molar Qj(ag) thermodynamic
properties are similar and become identical in the limit of
infinite dilution. In an ideal solution, each solute molecule
exerts an influence on the properties of the solution independent
of al other solute molecules in the solution. The solute
molecules are effectively an infinite distance apart leading to the
useful concept of the infinitely dilute solution.

In even a cursory investigation of the properties of solutions,
a key consideration is the distance between solute molecules.
For a simple solute (e.g. ured) in agueous solutions at
concentration ¢; the average distance apart, d, is given by
(Na-c))—Y3 where N, is the Avogadro constant. Then, if ¢ =
10-2 mol dm—3, d equals 5.5 nm.

Links between the macroscopic properties of a closed multi-
component system, and the variables that describe properties
attributed to the individual chemical components, are created
through chemical potentials® For a system at equilibrium,
chemical potentials have al the characteristics of state varia-

10 Chem. Soc. Rev., 2001, 30, 8-15

bles. Chemical potentialsare similar in thisrespect to volumeV,
entropy Sand enthalpy H; all are first derivatives of the Gibbs
energy.

For aneutral solute-j in aqueous solution at fixed T and p the
chemical potential, u;(aq) isrelated to themolality m; using egn.
(20) where ¥ is the activity coefficient of solute-j; m° = 1
mol kg—1.

pi(ag) = pf(aq) + RTIn(my-y/mP) (20)
By definition, at all T and p, limit(my — 0)y = 1; u(aq) isthe
chemical potential of solute-j inanidea solutionwherem, = mP°
= 1 mol kg—. For anideal solution, ¥ isunity at all molalities.
A key consideration in formulating equations for the depend-
ence of partial molar properties on composition is the limit that
molality m, tends to zero; e.g. with reference to egn. (20),
limit(m — O)y;(ac;id) = —co. In other words, the solute is
increasingly stabilised as the solution is diluted (at fixed T and
p). The Gurney model for solutions identifies cospheres of
solvent around each solute molecule. Hence solute-solute
interactions as described by activity coefficient y% can be
understood in part in terms of cosphere-cosphere interactions.
The extent to which the properties of a given neutral solute-j
deviate from the state defined as thermodynamically ideal
reflectsto alarge part the hydrophobic—hydrophilic character of
solute molecules.
For an agueous salt solution® containing a 1:1 sdt (e.g.
NaCl), the analogue of egn. (20) takesthefollowing form where
u;(aq) is the chemical potential of salt-j in agueous solution.

(a0 = pP(ag) + 2R TAn(my-p/mP) (21)

In egn. (21) 7. isthe mean ionic activity coefficient of salt-j
in solution. At al T and p, limit(my — 0)y. = 1; uP(aq) isthe
chemical potential of salt-j in an ideal agueous solution having
unit molality. As for simple solutes, in the limit of infinite
dilution the chemical potential of a salt in solution is minus
infinity. We anticipate that u(aq) is given by the sum of ionic
properties ©9(ag) and u° (ag) which are determined in part by
cation—water and anion—water interactions respectively, i.e.
ionic hydration.

The mean activity coefficient y. describes ion—on inter-
actions in solution. The classic analysis in this context was
given by Debye and Hiickel; see, for example, reference 10. For
very dilute solutions, the result is the famous Debye—Hckel
Limiting Law, often simply expressed as DHLL. The algebrais
simplified by defining a quantity S, which is characteristic of
the solvent, temperature and pressure through the corresponding
dependences of solvent density pi(l) and relative permittivity,
&

Hence IN(ye = —[zez_|-S,[my/mP] V2 (22)

Therefore, limit(my — zero)in(y) = 0; % = 1. In other
words, for very dilute solutionsIn(y.) isalinear function of (m/
mP)V'2 the gradient being defined by eqgn. (22). According to the
DHLL, the chemical potential of salt-j in areal solutionislower
than in the corresponding ideal solution.

5 Volumes of solutions: partial and apparent
molar volumes

The isothermal differential dependence of the chemical poten-
tial 1 (ag) on pressure leads to the partial molar volume for
solute-j, Vj(ag). From eqgn. (20), for a neutral solute

Vi(aa) = VP(aa) + RT-[0In(x)/0p]r (23)

Accordingly limit(my — 0)Vj(aq) = VP(ag) = V/* (ag). Here
V*(aq) isthelimiting (infinite dilution) partial molar volume of
solute-j in agueous solution. The limiting partial molar volume
of a solute in a given solution (at defined T and p) is
characteristic in part of solute-solvent interactions.



The volume of an agueous solution prepared using my moles
of solute-j and 1 kg of water is given by egn. (24), where M, is
the molar mass of the solvent.

V(ag; wi/kg = 1) = My~1Vy(ag) + mpVj(ag)  (24)

For real solutions, V;(aq) and Vj(ag) cannot be immediately
calculated from the measured density, p(ag) of an agueous
solution because both V;(ag) and Vj(ag) depend on molality m,.

An apparent molar volume of solute-j, ¢(V;), is defined; eqgn.
(25).

V(agwi/kg = 1) = M=2Vy(l) + my-¢(V) (25)

Lewis and Randall commented® that ‘ apparent mola quan-
tities have little thermodynamic utility’, a statement repeated in
the seconds but not the third20 edition of this classic monograph.
A further comment concerns two plots;! (i) V(agq; wy = 1 kg)
against my, and (i) [V(ag;ws = 1kg) — (I/M4)-Vi(1)] against my.
Then V;(aq) is the gradient of the tangent to the curve in plot
type (i) at the specified molality m;; ¢(V;) is the gradient of the
linein plot type (ii) joining the origin and [V(ag;w; = 1 kg) —
(YM1)-V1(1)] at molality m,.

By definition, limit(my — 0)¢(V)) = ¢(Vj)= = V{*(ag); the
limit of ¢(V;) at infinite dilution equalsthe limiting partial molar
volume of the solute Vj°(ag). Partial and apparent molar
volumes are related by egn. (26).

Vi(aa) = ¢(V)) + mp[0¢(V))/om] (26)
¢(V;) isusually calculated using the densities of solvent p; (1)
and solution p(ag) at the same T and p together with the

composition of the solution; e.g. eqn. (27) where ¢ is the
concentration of solute-j.

#(Vi) = {[p(1) — p(aa)l/ci-p3(D)} + [Mi/p2(D)]  (27)

For dilute solutions containing simple neutral solutes, ¢(V;) is

usually adequately described by alinear function of my such that
#(V))= and V;* are readily obtained; egn. (28).

#(V)) = ¢(Vj)= + by(m/mP) (28)

The partial molar volumefor agiven 1:1 salt V;(aq) isrelated

to the differential dependence of In(y.) on pressure at fixed T
and moldity my; cf. egn. (21).

Vi(aa) = Vj*(ag) + 2:R-T-{dIn(y.)/0p]+ (29)

From the definition of y. limit(m, — 0)Vj(ag) = Vjzg). Hence
in the limit of infinite dilution the partial molar volumeisareal
quantity.

According to the DHLL for al:1 sdlt,

Vi(ad) = Vi*(ag) — 2R-T-Sy(my/mP) 2 (30)

By definition, S, = (9S,/dp)t; Sy is negative. According
therefore to the DHLL, V(ag) is alinear function of (m/mo)¥2
(at fixed T and p). According to the DHLL the dependence of

apparent molar volume ¢(V;) on molality m is given by egn.
(31) where V{* equals ¢(V;)=.

o(Vi) = o(V))~ — (413)-RT-Sy-(my/mP) /2 (31)

For 1:1 sdlts in agueous solutions having molality 0.05
mol kg—1at 298 K thedifference ¢(V;) — ¢(V;)> doesnot follow
the pattern required by the DHLL. Rather the deviations can be
understood in terms of charge—charge interactions as described
by the DHLL together with cosphere—cosphere interactions
between hydration cospheres described by an additional term
linear in salt concentration.2

At this point we highlight the theme being developed in this
review. For a given agueous solution at defined T and p and at
equilibrium containing a single solute-j; (e.g. urea) the Gibbs
energy G is a state variable; cf. egn. (1). The solute-j in this
solution can be characterised by its chemical potential, 1;(ag);
egn. (20) and egn. (21). Then y; (ag) isrelated to the molality my
using egn. (20) in which pP(aq) isin part determined by solute—
solvent interactions and 7y characterises solute-solute inter-

actions in a rea solution. In the next stage the isotherma
dependence of u;(ag) on pressure leads to the partial molar
volume V,(ag). Densities of solutions are used to estimate the
apparent molar volume ¢(V;) using egn. (27). Inturnthelimiting
(infinite dilution) volumetric property is obtained. The next task
involves identifying those properties of solute and solvent
which determine V{*(ag). One approach assumes that V{*(ag) is
given by the sum of two contributions, Vj(intrinsic) and
Vj(cosphere); cf. reference 12. Thus Vj(intrinsic) reflects the
‘size’ of the solute molecule-j whereas Vj(cosphere) represents
the impact of solute-solvent interactions; i.e. the hydration of
solute-j in agueous solution.

Hence V;°(aq) = Vj(intrinsic) + Vj(cosphere) (32

Unfortunately thereis no unambiguous method which allows
us to calculate the two component volumes identified in egn.
(32). Nevertheless we specul ate that V;(intrinsic) isindependent
of temperature and pressure such that the temperature and
pressure derivatives of Vj*(ag) offer a method for probing the
hydration of solutes in agueous solution via Vj(cosphere). We
stress the word ‘speculate’ in this context. Therefore the
isothermal compressibility xr describing the (equilibrium)
dependence of volume on pressure at constant temperature
might seem the property which should command most of our
attention. Unfortunately isothermal compressions of solutions
are not readily measured. Similarly, determination of partia
molar expansions of a solute-j requires careful determination of
densities of solutions as a function of both temperature and
composition. Hence the amount of published information is not
extensive. At first sight it is surprising that the most extensively
measured property of solutions in this context is the isentropic
compressibility, xs. A less commonly quoted volumetric
property of aqueous solutions is the isentropic expansion,
Eg(ag). There is an interesting link between the isentropic
compressions and expansions; section 10.

6 Thermal expansions of solutions: isobaric
properties

The isobaric differential dependence of the volume, V, on
temperature (at equilibrium where A = 0) is given by eqgn. (8).
The isobaric expansion Ey(ag) for an agueous solution contain-
ing solute-j is related to the partial molar expansions of solute
and solvent; cf. egn. (17).

Ep(ad) = ni-Epi(aq) + ny-Epy(aq) (33)
Similarly from egn. (19) for Q =V,
[0V(aa)/oT], = ny[aVi()/0T]p + n{0¢(V))/OT],  (34)
Thus, Ep(ad) = nyEpu(l) + ny-¢(Ep) (35
Here ¢(Eg) = [0¢(V;)/0T],, the (equilibrium) apparent molar
isobaric expansion for solute-j. Further, ¢(E) is related to
ap(aq) and o (1) using egn. (36); cf. egn. (27).
#(Ep) = [op(ad)— opa()](G) 2 + ofu(l)-9(Vy)  (36)
Thus ¢(Ey;) is obtained for a solution having concentration
G.

7 Isentropic expansions of solutions

Generdly little interest has been shown in either partial or
apparent molar isentropic expansions of solutes. Complications
are encountered in understanding i sentropic expansions without
the redeeming feature of practical accessibility via an analogue
of the Newton—Laplace equation (Section 3). The isentropic
expansion Eg(ag) is defined by egn. (9). The constraint on this
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partial differential refers to the entropy of the solution. The
straightforward schemes described in egn. (34)-(36) cannot be
carried over to a consideration of Eg(aq) because as we change
the amount of solute n; for a fixed temperature, pressure and
amount of solvent n;, so both V(aq) and Saq) change yielding
a new isentropic thermal expansion Eg(aqg) at a new entropy
Saq). Then for a series of solutions having different molalities,
comparison of Eg(aqg) is not straightforward because entropy
Saq) is itself a function of solution composition. Further
comparison cannot be readily drawn with the isentropic thermal
expansion of the pure solvent Eg(1); egn. (37).

Es(1) = [8Vi(1)/0T] at constant S;(1) (37)

Thus Eg(ag) is a non-Gibbsian property. Consequently,
familiar thermodynamic relationships involving partial molar
properties are not valid in the case of partial molar isentropic
(thermal) expansions which are non-Lewisian properties. We
describe [dV;(a0)/0T] for solute-j in agueous solution at constant
S(aq) as a semi-partial molar property.

Then for a solution having entropy Saqg), two partial molar
isentropic thermal expansions are defined for the solvent and
solute. Thus at S(aq) characterised by T, p, n; and ny;,

Eg(ag;def) = [0Eg(aq)/ony] at fixed T, pand n;  (38)
Eg(ag;def) = [0ES(ag)/on] at fixed T, pand n;  (39)
Sothat, Edag) = niEs(agdefl) + nEgagdef)  (40)

Egn. (40) relates Eg(aq) to the partidl molar intensive
isentropic properties of both solvent and solute.

We find a similar dichotomy in defining an apparent molar
isentropic expansion for solute-j, ¢(Eg). We might assert that
¢(Eg) is defined by the isentropic differential dependence ¢(V;)
on temperature. Alternatively, we use an equation by analogy to
those used to relate, for example, V(aq) to Vi and ¢(V).

Differentiation of egn. (19) with V = Q at constant entropy
again raises the problem that the molar entropy S(aqg) does not
equal the molar entropy of the pure solvent, S;(I) However, by
analogy with the definition of ¢(E;) we define aquantity ¢(Esg;
def) using egn. (41); cf. egn. (35).

Es(ag) = ni-Es(l) + ny-¢(Eg;def) (41)

In egn. (41) Eg(l) is the molar intensive property of the
solvent. Thus, the isentropic expansion of the solution at

entropy Saq) is linked with that of the pure solvent at entropy
Si(1). Further

#(Eg;def) = [ag(an) — a=()](G) 1 + as()-¢(V) (42)

Interesting equationslink isobaric and isentropic expansions;
Section 10.

8 Isothermal compressions and compressibilities
of solutions

The differential dependence of V(ag) on pressure (at constant
temperature) yields an equation for theisothermal (equilibrium)
compression of a solution; cf. eqn. (24),

Kr(ag) = ni-Kn(ag) + ni-Kyj(aq) (43)

Partial molar compressions K(ad) and Kvj(ag) are Lewisian
properties of solute and solvent respectively. The anaogue of
egn. (41) has the following form where ¢(K;) is the apparent
molar (isothermal) compression of solutej.

Kr(ag) = ni-Kr(l) + nj-¢(K) (44)
¢(Kry) = —[0¢(V))/opl+ (45)

#(K+;) is related to the concentration of solute ¢; and the
apparent molar volume, ¢(V)).

where

12 Chem. Soc. Rev., 2001, 30, 8-15

¢(Kn) = [rr(aa) — xn()](c)~ + xnl)-¢(V)  (46)

The latter equation resembles the equations for ¢(Ey) and

¢(Eg;def) as a function of the concentration of solute ¢; and

#(V;). Both ¢(K) and Ky;(ag) depend on the molality of the

solute. Kvj(aq) is related to the second differential of the solute
activity coefficient with respect to pressure; cf. egn. (23).

Kr(aa) = Kfi(ag) — RT-[02n(y)/0p%]+ (47)

One might have anticipated an extensive scientific literature
reporting K¥(ag) for a wide range of solutes. Unfortunately,
direct measurement of isothermal compressibilitiesis difficult;
at least to the precision required for determining K¥j(ag). Under
these circumstances two procedures have been adopted, one
commendable and the other perhaps less so. In both cases, the
chosen route uses the isentropic compressibilities of solutions
calculated from densities and speed of sound (Section 3).

The commendable route combines the measured isentropic
compressibilities, densities and isobaric heat capacities Cy(aq)
in order to calculate isothermal compressibilities; cf. egn. (14)
for agiven solution having molality my. An excellent example of
this approach is described by Bernal and VVan Hook13 who used
the Desnoyers—Philip equation (see Section 10) to calculate
#(K+j)= for glucose, sucrose and fructose in aqueous solutions
a 348 K. In a similar manner, Hedwig et al. used the
Desnoyers—Philip equation (Section 10) to obtain estimates of
limiting apparent molar isothermal compressions of glycyl
dipeptides in aqueous solutions at 298 K.14

The less commendable but, under the circumstances, under-
standabl e route uses ameasured ks as being effectively the same
as k. Hence ¢(Kg;def) is often taken as a satisfactory estimate
of ¢(K+;). We return to this point in Section 9 because there are
further problems which we need to address.

For neutral solutes ¢(Kr;) is satisfactorily expressed as a
linear function of the concentration c;.

Thus P(Kr) = ¢(Kn)= + ac (48)

For aqueous salt solutions the apparent molar compression,
#(Kv;) is often a linear function of the square root of the salt
concentration.15

Thus #(Kn) = ¢(Kn)= + Scgf (49)

9 Isentropic compressions and compr essibilities of
solutions

Weturn to the definition of aproperty that, by analogy to ¢(Kr;),
isthe apparent molar isentropic compression of the solute ¢(Kg)
which, again by analogy, is related to a partial molar isentropic
compression Kg of solute-j. For reasons given below, we write
the apparent property ¢(Kg;def).

These isentropic properties emerge from consideration of
eqn. (3) and eqgn. (4). The assertion is made that an aqueous
solution can be perturbed, by a small change in pressure 6p, to
aneighbouring state having the same entropy; cf. egn. (4). Then
the equilibrium isentropic compression is defined by egn.
(50).

Kgag) = —[9V(aq)/op] s (50)

The constraint on thispartial differential refersto ‘at constant
Sag)’. Thus the definition of Kg(ag) uses non-Gibbsian
independent variables. Isentropic parameters do not arise
naturally from the formalism which expresses the Gibbs energy
in terms of independent variables in the case of, for example, a
simple solution, [T,p,ny,Nn;].

The isothermal compression of a solution Ky(aq) and partial
molar isotherma compressions of both solvent Ky(ag) and
solute Kyj(ag) are defined using Gibbsian independent varia-
bles; e.g. egn. (43)-(45). Unfortunately these equations cannot



be simply carried over to the isentropic property Kg(ag). Indeed
the isentropic pressure dependence of the volume may be
expressed as in egn. (51). The equation emphasises that the
entropy which remains constant is that of the solution.

K = V(P -0 — IOVl

On the other hand, Ks (agq) may also be re-expressed using
Euler’s theorem.

Then, Kg(ad) = ny[0K(@d)/0na]rpng)
+ 1 [0Ka0)/an]rpny  (52)

But Kg(ag) is defined using non-Gibbsian independent
variables. As a consequence two inequalities follow.

—[0V1(aa)/0p] ey # [OK(@)/ON] 1) (53)
—[0Va(a0)/0p]saq) # [IK(a0)/ON]7pn(a) (54)

[OK (a0)/an] ) and [OK(86)/0ny] p.ncry are respectively
the partial molar properties of the solvent and solute. Because
partial molar properties should describe the effects of a change
in composition on the properties of a solution, we write egn.
(52) for an aqueous solution? in the following form.

Kqag) = np-Kg(ag,def) + nj-Kg(ag;def) (55)
Kg(ag,def) # —[0V;(a0)/0p] saq) (56)

Therefore Kg(ag;def) is a non-Lewisian partial molar
property. We might define a molar isentropic compression of
solute j as (minus) the isentropic differential dependence of
partial molar volume on pressure. This alternative definition is
consistent with egn. (51) expressing a summation rule analo-
gous to that used for partial molar properties. However some
other thermodynamic relationships involving partial molar
propertieswould not bevalid inthis case. Therefore, —[dV;(ad)/
Oplsag IS @ semi-partial property. A similar problem is
encountered in defining an apparent molar compression for
solute-j, ¢(Kg) in asolution having volume V(aq); cf. egn. (56).
We might assert that ¢(Kg) is related to the isentropic
differential dependence of ¢(V;) on pressure, —[¢(V;)/0p] gag)-
Alternatively, using as a guide the apparent molar properties
#(Eyj) and ¢(Ky;), we could define g(Kg;def) using egn. (57).

Kgag) = niKsl(l) + n-¢(Kg;def) (57)

Kg(ag;def) as given by egn. (52) and ¢(Kg;def) are linked;
egn. (58).

Kg(ag,def) = ¢(Kg;def) + n;-[09(Kg;def)/on]1pnq) (58)

This equation is of the general form encountered for other
apparent and partial molar properties; cf. eqn. (26). Thisformis
aso valid in the case of partial and apparent molar isobaric
expansions, isothermal compressions and isobaric heat capaci-
ties. On the other hand, the semi-partial isentropic compression
defined by —[0V;(a0)/dp] 5aq) and the semi-apparent isentropic
compression defined by —[d¢(V,)/0p] saq) are related. Thusthe
isentropic pressure dependence of Vj(ag) is given by egn.
(59).

—[0Vj(aa)/Op]saq) = —[00(V;)/0P]saq) —
ny-{0[0¢(V))/0Nn]1,p.n(1)/ 0P} ey (59)

Hence, {0[9¢(V;)/0n]7 p,n1)/0P} sty #
{0[00(V;} 0Pl stay/ON} Tpny  (60)

Hence, the analogue of egn. (58) does not hold for these
‘semi’ properties. The inequalities (53) and (54) highlight the
essence of non-Lewisian properties. Their origin is a combina-
tion of properties defined in terms of Gibbsian and non-
Gibbsian independent variables as in egn. (51) and egn. (52).
This combination is also the reason for the inequality (60). We
stress that the isentropic condition in egn. (51) and egn. (52)
refers to the entropy Saq) of the solution defined as is the
volume V(ag) by the Gibbsian independent variables[T,p,ninj].

Hence,

But this is not the entropy Si(l) of the pure solvent having
volume Vi(l). S(aq) at fixed composition isnot simply related to
Si(l) as, for example, linear functions of temperature and
pressure.

The isentropic condition is involved in the definitions of
isentropic compression, Kig(l) and isentropic compressibility
k(1) of the solvent.

Ka () = —[aVi(l)/ap] at constant Si(1) (61)
ka(l) = Ka()/Vi(l) = —[aVa(l)/ap]/Va(l) at constant Sy(1)
(62)

The different isentropic conditions in egn. (50) and in egn.
(61) and egn. (62) signa a complexity in the isentropic
differentiation of egn. (25) with respect to pressure.

Interest in the isentropic compresssibilities of solutions was
stimulated by Gucker'> and, in particular, by Harned and
Owen.1 The latter authors defined a (practical) property of the
solute, here caled ¢(Kg;def) using egn. (63) where the
composition of a given agueous solution is expressed using
concentration ¢;.

o(Kg;def) = [xs(aq) — ka()]{g]—* + ka(l)-6(V;) (63)
Also

#(Kg;def) = [ks(a0)-pa(l) — x=(l)-p(aa)] [g-pa()] ~* +
ksi()-Mj-[pa()] 2 (64)
Similar equations relate ¢(Kg,def) to the moladlity of the
solute, m.

#(Kg;def) = [rs(ag) — x&()][my-pa(l)]— + Ks(aq)-¢(\/j()6

#(Kg;def) = [ks(@)pi(l) — x&(l)-pad)] [my-p(aa)-pa(1)] -2 +
xk(aq)-Mj[p(ag)] —*  (66)

These last four defining equations are rigorously equivalent.
A crucia feature of egn. (63)—(66) is the equivalence symbol
(i.e. =). In this sense Harned and Owen? defined an apparent
isentropic compression of solute-j in terms of the quantities on
the rhs of egn. (63). They recognised that ¢(Kg;def) does not
have thermodynamic basis. Unfortunately many authorsrefer to
the proposals by Harned and Owen! without noting the
significance of the symbol, =. Thetarget quantity isthe apparent
molar isentropic compression defined by egn. (57) which,
however, isnot adescription of anisentropic processasitsname
might suggest. In fact ¢(Kg;def) is a measure of the change in
the isentropic compression of a solution when solute-j is added
under isothermal -isobaric conditions. The equivalence symbol
in egn. (63)—(66) is important.16

The impression is often given that egn. (63)—66) are
thermodynamic. Some authors do, however, indicate reserva-
tions especially when the estimates of ¢(Kg;def) are discussed,
particularly the dependence of ¢(Kg;def) on solution composi-
tion. Franks and co-workers!? recognised the lack of isobaric
heat capacity data which forces the adoption of the approach in
which ¢(Kg;def) is effectively assumed equal to ¢(Ky;). Owen
and Simons!8 estimate that overlooking the difference between
ks(ag) and xy(aq) causes errors of approximately 7.5% in
estimates of ¢(K+;)= for NaCl(ag) and KCl(ag) at 298 K.

Interesting patterns emerge for the dependences of ¢(Kg;def)
on molality my and on solute-j. Further, these dependences are
readily extrapolated (geometrically) to infinite dilution to yield
estimates of ¢(Kg;def)*. These comments apply to solutions of
neutral solutes in both agqueous and non-agueous solutions; e.g.
solutions in propylene carbonate.19

For dilute solutions of neutral solutes ¢(Kg;def) is often a
linear function of the molality my.

Thus  g(Kgidef) = §(Kgidel)* + bs(mim?) — (67)

For aqueous sol utions containing ureas, acetamides and o, -
alkanediols, the slope bks is positive and characteristic of the
solute20 Sakurai et al.2! report the results of a detailed
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investigation into the isentropic compression of acohols in
dilute solutions over the range from 5 to 45 Celsius. Inter-
estingly ¢(Kg;def)= isgenerally smaller than the molar property
of the pure liquid-j. Galema and Hgiland?2 use egn. (65) to
analyse speed of sound data for severa carbohydrates in
agueous solutions at 298 K. They comment on the cal cul ation of
Kg(a0;def) for solute-j using egn. (68).

Kg(a0;def) = ¢(Kg;def) + m-[0¢(Kg;def)/om]r, (68)

This study confirmed the importance of the stereochemistry
of carbohydrates on their hydration. A clear contrast is drawn
between those solutes where the hydrophilic groups match and
mismatch23 into the three dimensionaly hydrogen-bonded
structure of liquid water.

Desnoyers et al .24 used egn. (65) to probe micelle formation
by alkyldimethylamine oxides. Eqn. (65) was used to analyse
the isentropic compressibilities of micellar aqueous solutions
containing sodium octanoate and ethoxylated alcohols.25 Igbal
and Verrall26 use egn. (66) in an examination of the compressi-
bilities of glycyl peptides in agueous solutions at 298 K. The
dependence of ¢(Kg;def) on molality my is linear leading to
estimates ¢(Kg;def)=. For amino acids in agueous solution at
298 K, the calculated ¢(Kg;def) is a linear function2” of the
molality of the neutral amino acid yielding estimates of
9(Ks;def)=.

For salt solutions, the dependence of ¢(Kg;def) on the
molality of the salt is generally examined in the light of
equations describing the role of ion-on interactions (see
Section 4). For dilute solutions egn. (69) forms the basis for
examining the dependence of ¢(Kg;def) on (m)¥2 where m, is
the molality of the salt-j.

Then,  ¢(Ksidef) = g(Kgidel)= + Scs(mymd)¥2  (69)

For alarge range of 1:1 sdlts, that ¢(Kg;def)= is negative is
attributed to electrostriction by theionic charges. ¢(Kg;def)= is
more negative for solutions in D,O, than in H,O, as a
consequence of moreintense electrostriction in D,0.28 Further,
on the basis of the Desnoyers—Philip equation (see Section 10),
the difference ¢(Kg;def) — ¢(K)>= is small but not negligible,
amounting to approximately 10%. For alkylammonium ionsin
agueous solutions ¢(Kg;def)= decreases with increase in the
hydrophobic power, matching a general increase in ¢(V;)=.2°

Generally the property Scs cannot be evaluated because the
isentropic dependence of the relative permittivity of the solvent
is required.28 Further, the DHLL for ¢(Kg;def) is itself a
complicated function of salt molality.3° However for many
dilute salt solutions ¢(Kg;def) isapproximately alinear function
of (m/mP)V2; cf. egn. (69). Indeed ¢(Kg;def) is approximately a
linear function of (m/mP)¥2 for a wide range of aqueous and
non-aqueous salt solutions; e.g. tetraalkylammonium salts in
cyanomethane and benzonitrile.31 ¢(Kg;def) for copper(i) and
sodium perchlorates in cyanobenzene, pyridine and cyano-
methane show almost no dependence on salt molality.3!

Determination of ¢(Kg;def) for amino acids,3233 proteins,
nucleic acids and nucleotides34 has attracted enormousinterest.
Interesting patterns emerge pointing to the complexity of both
solute-water and solute-solute interactions in these systems.

In terms of the development of the theory, the problem is
concerned with the differential dependence of Vi(l) on pressure
at constant S(aq) describing how the volume of the solvent
would depend on pressureif it were held at the same entropy as
the solution.16

Thus

—~[(09(V;)/0plsay = [xac) — K&a()] {mypa(] 2 +
k(@) 9(Vi) + [mpa)] > T-en()){ [l ofac)] —
[oa(YoAD]}  (70)

The latter equation is thermodynamically correct. No as-
sumptions have been made in its derivation. We adopt the
procedure used by Harned and Owen.1
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~[(09(V)/OP]sia) = P(Ksclef) + o
[My-p1(N]~2T-0fa (1) { [otp(a0)/ o(aa)] — [ofa()/oa(D]}  (71)
Consequently the difference between —[d¢(V;)/0p]gaq and

#(Kg;def) is determined by the difference A¢; egn. (72).

A¢ = {[ap(aa)/o(aq)] — [cpu(l)/or(D]} (72)

However, A¢/mmy is indeterminate at infinite dilution. But
using L’ Hospital’s rule,

limit (M — 0)Ag/my =
[p1(1)-pa(D)/ ox (D [S(Epy) =/ oipa(D] — [§(Ci)=loa (D]} (73)

Neverthel ess, despite the thermodynamic polish given to the
analysis of isentropic compressions of solutions, there is an
underlying problem. The latter again emerges in egn. (70)
which needs to refer to compressions at constant entropies for
solutions and the pure solvent. In fact rarely is this feature
acknowledged. Indeed one purpose of thisreview isto point out
this feature.

10 Apparent molar isothermal and isentropic
compressions and expansions: infinite dilution

Expansions and compressions of solutions under a combination
of isothermal, isobaric and isentropic constraints are intimately
linked.35> The most frequently quoted relationship is the
Desnoyers—Philip equation* linking ¢(K;) and ¢(Kg;def). We
noted that the extrapolated limiting value ¢(Ky)= offers
information about the hydration of a solute. Neverthelessin the
face of experimental problems the favoured approach examines
isentropic compressibilities. The apparent molar isothermal
compression for solutej ¢(Ky) is related to the solute
concentration ¢; using egn. (46). The corresponding apparent
molar isentropic compression of solute-j ¢(Kg;def) isrelated to
the concentration using egn. (63). Hence ¢(K+) and ¢(Kg;def)
are related by the following eqgn. (74).

#(Kr) — ¢(Kg;def) = (g)~1[8(aq) — ai(l)] + 5‘1(')-¢(V%)74)

The difference [¢(K+;) — ¢(Kg;def)] depends on the concen-
tration of the solute ¢;. Further [8(ag) — &1(1)] is not zero. Thus
from eqgn. (14),

8(aq) — ou(l) = {T{op(a)]?(aq)} — {T-[a51(|)]2/61(|)%75)

Using the technique of adding and subtracting the same
quantity, egn. (75) can be re-expressed as follows.

Saa) — 01(1) = { &(an)/[ep(an)]} [ap(aa) + opa()]-crp(a) —
()] — [&1(1)/o(ag)] [o(aq) — ou(l)]  (76)
The difference, [ap(ad) — opa(1)] is related to ¢(Ey) using
eqn. (36). Similarly, [o(ag) — oi(1)] is related to ¢(C,;) using
eqn. (77).

#(Cpj) = [o(aa) — aa(N](c)~* + aal)-o(V) (77

Then using egn. (76), we express egn. (74) in the following
manner.

9(Km) — ¢(Kidef) = [5ac)/op(ag)] {1 +
[opa() o)1} -¢(Epy) —[01(1)/ o(a0)]-9(Cpy) + {61(l) —
[&(aq)-oga(l)/ orp(aa)]} -¢(V;)  (78)
Eqn. (78) was obtained by Desnoyers and Philip4 although a
proof was not given. Desnoyers and Philip showed that if
o(Ky)= and ¢(Kg;def)= are the limiting (infinite dilution)
apparent molar properties, the difference is given by egn.
(79).

(Krj)= — o(Kg;def)= = 81(1)-{[2-9(Epy) =/ o (1)] -
[¢(Cy)=lor(D]}  (79)



Using eqgn. (63), ¢(Kg;def) isplotted asafunction of ¢; across
a set of different solutions having different entropies. Then
limit(c; — 0)¢(Kg;def) defines ¢(Kg;def)=. Granted two
limiting quantities, ¢(Ey)= and ¢(C;)= are available for the
solution at the same T and p, egn. (79) is used to calculate
¢(Kr;)= using ¢(Kg;def)=.

An dternative form of eqn. (78 refers to a solution, molality
m_30

Thus, §(Kr) — o(Ksidef) = 81(){[20(Ep)/cpa(1)] —
[9(Co)/01()] + [pi(1)m LH(En)I2 0a (D]} -
{1+ [pi)m-§(Cp)r(]} 2 (80)

The apparent molar expansions, ¢(Eg) and ¢(E;def) are
linked by egn. (81).

e al) o e(a)
OE5) ~ Egide) == 5 o HER)+ s oK)
ga) k7() .
"ot o " @y
e [ @m0 e@) xn0) (o))
+[£1(I) (Hap(aq)J e @) (1+ o(aq)ﬂ A

where £(1) and g(ag) are defined by egn. (15). In the limit of
infinite dilution,

‘P(Epj)m _‘P(Ea;def)m __ ¢(Epj)w + q)(KTj)m + ¢(ij)m
& () o) k) oy()

On the rhs of egn. (82) each term is the ratio of a limiting
apparent molar property of solute-j to the corresponding volume
intensive property of the solvent. An alied set of equations
incorporate terms relating to isentropic compressions. Thus

(82)

ey a() oy os@) o
¢(Eg;def) = o, (@) ¢(Epj)+KS(aq) ¢(Kg;def) +
as@) xa() o vilama.l1 a*pl(l)]_
cstac)-ota) "J){“ﬂ” [ )

o1()
o(aq)

o s(e) K5 (1) .(“

- oV
(@) H o(V;) (83)

Then in the limit of infinite dilution,

O(Egidel)” _ 9(Ey)”

9(Kg:def)”  9(Cy)”
ag() 0

S0) o (1)

Finaly, ‘semi’ apparent molar isentropic expansions (section
7) and compressions (Section 9) are linked; egn. (85).

[00(V))]0T] qagy/ a(a0) = —[9(V;)/0p] s/ Ks(@d)  (85)

Therefore in an analogous fashion to the pattern shown by
eqgn. (82) and egn. (84) an interesting pattern emerges in the
form of the termsin egn. (85).

These fascinating equationsillustrate the power of thermody-
namics in drawing together the properties of a given solution.
Indeed this has been one of the themes of this review.

(84)
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